Lifting Linear Sketches: Optimal
Bounds and Adversarial Robustness
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Streaming Model

* Input: We assume there is an underlying frequency vector x € Z™",
initialized to 0™

* Update: The stream consists of updates of the form (i;, w;),
meaning x; < x; + w;

 OQutput: Evaluation (or approximation) of f(x) for a given function f

* Goal: Use space sublinear in the dimension n and stream length m



Streaming Model

* Insertion-Only model: when w; can only be positive

* Turnstile model: when w, can be both positive or negative



Linear Sketch

e Algorithm maintains Ax for a matrix A throughout the stream
* |n the streaming model, the entries of A should be poly(n) bounded integers

e Easy to maintain under additive updates to coordinates of x
* The algorithm then outputs f (Ax) for some post-processing function f

 All turnstile streaming algorithms on a sufficiently long stream might as
well be linear sketches [LNW14, AHLW16]



Linear Sketch

* Lower bounds are fundamental to our understanding of the
capabilities and limitations of streaming algorithms

* A popular method is to define two “hard” distribution D, and
D, that exhibit a desired gap for the problem of interest

* Then show d;y (Ax, Ay) is small for x ~ D; and y ~ D, when
A has at most 7 rows



Linear Sketch

* A simple example: consider the problem of estimating ||x||,

*D; ~ N(O,I,) for a Gaussian distribution with mean zero and identity
covariance, and D, ~ N(0,(1 + &)I,,) .

* Without loss of generality, assume A has orthonormal rows
*lfx ~Dy,Ax ~ N(O,I,.) whileify ~D,,Ay ~ N(0,(1 + ¢)I,,)

* Using standard results on the number of samples needed to
distinguish two normal distributions: r = Q(log(1/6) /&%)



Linear Sketch

* These techniques imply lower bounds for:
* £}, estimation [GW18]
* Compressed sensing [PW11, PW13]
* Eigenvalue estimation and PSD testing [NSW22, PW23]
* Operator norm and Ky Fan norm [LW16]
* Norm estimation for adversarially robust streaming
algorithms [HW13]

* The distributions D; and D, are often chosen to be multivariate
Gaussians (or somewhat “near” Gaussian), to utilize rotational
Invariance



Linear Sketch

* Drawback of these lower bounds: they require the entries of the
input vector x to be real-valued as well

* This is inherent: if x has entries with finite bit complexity, we could use
large enough precision entries in A to exactly recover x from Ax

* The streaming model is defined on a stream of additive updates
to x with finite precision

* These issues mean that none of the above lower bounds
actually apply to the data stream model



Linear Sketch

* |[dea: e.g., one could try to discretize the input distribution
to the above problem

e Difficulty: the distribution is no longer rotationally invariant,
and a priori it is not clear that information about the input
Is revealed by truncating low order bits

* Question: Is it possible to lift linear sketch lower bounds for
continuous inputs to obtain linear sketch lower bounds for
discrete inputs?



Adversarially Robust Streaming

* Input: Updates to an underlying vector x, which arrive
sequentially and adversarially

e Qutput: Evaluation (or approximation) of a given function
* Goal: Use space sublinear in the dimension n of the input x

X1 < X +1 1

Estimate number of non-zero coordinates of x
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Classic Insertion-Only Algorithms

* Space 0 (Eiz +log n) algorithm for £ [KNW 10, Blasiok20]
* Space O (gizlog n) algorithm for £, with p € (0, 2| [BDN17]

* Space O (Eiz nl=2/P Jog? n) algorithm for £, with p > 2
[Ganguly11l,GW18]

* Space 0 (Sizlog n) algorithm for £,-heavy hitters [BCINWW17]



Robust Insertion-Only Algorithms

log n) algorithm for ¢,

log n) algorithm for £, with p € (0, 2]
nl_z/p) algorithm for £, with integer p > 2
— log n) algorithm for L,-heavy hitters

|II

“No losses™ are necessary

* However, large gap between upper and lower bounds for turnstile
streams: O(n) upper bound, lower bound same as non-robust variant



Reconstruction Attack on Linear Sketches

* Linear sketches for £, estimation (p > 0) are “not robust” to
adversarial attacks, require (0(n) dimension [Hardt-Woodruff13]

* Approximately learn sketching matrix A, then query x € Ker(A) or
x = 0™ each with probability %



Reconstruction Attack on Linear Sketches

e Attack randomly generates Gaussian vectors
e Analysis uses rotational invariance of Gaussians
e Attack ONLY works on real-valued inputs

* Question: Does there exist a sublinear space adversarially robust F,-
estimation linear sketch in a finite precision stream?

* Recently this was answered for linear sketches for £, in a finite precision
stream [Gribelyuk-Lin-Woodruff-Yu-Zhou24]. Techniques specific to £



We give a technique for lifting linear sketch lower bounds for
continuous inputs to achieve linear sketch lower bounds for
discrete inputs, thereby answering the above open questions




Discrete Gaussian Distribution

* Let D(0,S’S) be discrete Gaussian distribution with 0™ mean
and covariance ST S. Then the probability mass function satisfies

p X =x] « —xT (25751
ypiFsrg X = X1 o exp(=x7(2575)™ x)

* Does not satisfy rotational invariance

* Also has a nhormalizing constant. For now, supported on Z"



Our Results (Lifting Framework)

Suppose that
X ~D(0,STS)and Y ~ N(0,5'S), Z is an arbitrary integer
distribution
* f satisfies 1f(x) = f(y)] < -

~X+Zy~Y+Z
e g(Ax) = f(x) for x ~ X + Z with probablllty at least 1 —g

« A € R"™" has polynomially-bounded integer entries and the

singular value of S’ S is sufficiently large

Then there is another sketching matrix A’ € R*"*™ with estimator

hsuchthat h(A'y) = f(y)wp. 1 —6fory~Y +Z



Example Problem (£, Estimation)

0, x|l < (1+€e)N
*f(x) =11, x|l = (1+ 3¢e)N
1, otherwise

X, ~D(0,N%L,)and X, ~ D(0, (1 + 4€)2N2L,)
Y, ~N(0,N2L,)and Y, ~ N(O, (1 + 4€)2N21,)

e f satisfies 1f(x) # f(y)] < —

x"’Xl yNYl



Example Problem (£, Estimation)

* Suppose there exists a g(Ax) that can distinguish X; and
X2

* From our theorem, there exists h(A'y) that can distinguish
Y, and Y5

* Then we can use the lower bound for the continuous case!



Our Results (Applications)

We apply our lifting technique to obtain optimal lower bounds:

Existing Real-Valued LB

Previous Discrete LB

Our Discrete LB

L, Estimation, p € [1, 2]
L,, Estimation, p > 2
Operator Norm
Eigenvalue Estimation
PSD Testing

Compressed Sensing

Q (L log ) [GWIS]
Q (nl 2/pl()gn) [GW18]
Q (%) [LW16]

Q (%) [NSW22]
z(i,i) [SW23]
Q(Elog) [PW1]

Q(Llogi) JWI3]
Q (n! 2@) [LW13, WZ21a]
0 ( ]og d) (folklore)

Q (folklore)
Q (folklore)

) (folklore)

Q (Elz log %) (Lemma 5.1.2)
0 (nl 2/P log n) (Lemma 5.2.4)

d? . o 2 Q
Q (Eg) (Lemma 5.3.8)

Q) E—E; (rlh{,‘-{'}rfﬁlll-'-}.l.l['l)
Q) 5L4 (rl-ll{,"{'}l'f,‘lllJ-:l.l.ll)

0 (% log %) (Lemma 5.5.13)



Our Results (Adversarial Robustness)

e LetB > 1 be any fixed desired accuracy parameter.

* Any adversarially robust streaming algorithm which uses a
finite-precision linear sketch and B-approximates the
£, normin a turnstile stream mustuser = n — O(log Bn)

FrOWS.

* The adaptive attack uses poly(r logn) adaptive queries to the
integer sketch and has runtime poly(r logn) across r rounds of
adaptivity and can be implemented in a polynomially-bounded

turnstile stream.



Future Directions

* Lower bounds for streaming beyond integer linear sketches?

* Lower bounds for adversarially robust £, estimation for

turnstile streaming algorithms?
* Currently only have lower bounds for linear sketches in this model:
r = Q(no(l)) dimension lower bound for £, [GLWYZ24]
r = (l(n) optimal lower bound for £, (p > 0) [This work!]

Thank you for listening!
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